Slipped-strand mispairing in a plastid gene: rpoC2 in grasses (Poaceae).
نویسندگان
چکیده
An exception to the generally conservative nature of plastid gene evolution is the gene coding for the beta" subunit of RNA polymerase, rpoC2. Previous work by others has shown that maize and rice have an insertion in the coding region of rpoC2, relative to spinach and tobacco. To assess the distribution of this extra coding sequence, we surveyed a broad phylogenetic sample comprising 55 species from 17 angiosperm families by using Southern hybridization. The extra coding sequence is restricted to the grasses (Poaceae). DNA sequence analysis of 11 species from all five subfamilies within the grass family demonstrates that the extra sequence in the coding region of rpoC2 is a repetitive array that exhibits more than a twofold increase in nucleotide substitution, as well as a large number of insertion/deletion events, relative to the adjacent flanking sequences. The structure of the array suggests that slipped-strand mispairing causes the repeated motifs and adds to the mechanisms through which the coding sequence of plastid genes are known to evolve. Phylogenetic analyses based on the sequence data from grass species support several relationships previously suggested by morphological work, but they are ambiguous about broad relationships within the family.
منابع مشابه
Horizontal Transfer of DNA from the Mitochondrial to the Plastid Genome and Its Subsequent Evolution in Milkweeds (Apocynaceae)
Horizontal gene transfer (HGT) of DNA from the plastid to the nuclear and mitochondrial genomes of higher plants is a common phenomenon; however, plastid genomes (plastomes) are highly conserved and have generally been regarded as impervious to HGT. We sequenced the 158 kb plastome and the 690 kb mitochondrial genome of common milkweed (Asclepias syriaca [Apocynaceae]) and found evidence of int...
متن کاملSlipped-strand mispairing can function as a phase variation mechanism in Escherichia coli.
Slipped-strand mispairing (SSM) has not been identified as a mechanism of phase variation in Escherichia coli. Using a reporter gene, we show that sequences that cause phase variation by SSM in Haemophilus influenzae also lead to phase variation when introduced onto the chromosome of E. coli, and the frequencies of switching are in the biologically relevant range. Thus, the absence of SSM-media...
متن کاملA putative leucine zipper activator of Pasteurella haemolytica leukotoxin transcription and the potential for modulation of its synthesis by slipped-strand mispairing.
A Pasteurella haemolytica cosmid clone that activates leukotoxin transcription in Escherichia coli has been isolated. The activator locus, alxA, is part of a continuous open reading frame that includes the type I hsdM methylase gene. AlxA and HsdM peptides are processed from a precursor, and translation of the polyprotein can be modulated by slipped-strand mispairing across a pentanucleotide re...
متن کاملRNA polymerase subunits encoded by the plastid rpo genes are not shared with the nucleus-encoded plastid enzyme.
Plastid genes in photosynthetic higher plants are transcribed by at least two RNA polymerases. The plastid rpoA, rpoB, rpoC1, and rpoC2 genes encode subunits of the plastid-encoded plastid RNA polymerase (PEP), an Escherichia coli-like core enzyme. The second enzyme is referred to as the nucleus-encoded plastid RNA polymerase (NEP), since its subunits are assumed to be encoded in the nucleus. P...
متن کاملPhase variation of gonococcal protein II: regulation of gene expression by slipped-strand mispairing of a repetitive DNA sequence.
Expression of outer membrane protein II (P.II) of Neisseria gonorrhoeae is subject to reversible phase variation at a rate of 10(-3)-10(-4)/cell/generation. The signal peptide coding regions of P.II genes contain variable numbers of tandem repeats of the sequence CTCTT. Changes in the number of CTCTT units, leading to frameshifting within the gene, are responsible for changes in P.II expression...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular biology and evolution
دوره 11 1 شماره
صفحات -
تاریخ انتشار 1994